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SUMMARY  We analyze additive effects of nonlinear dynam-
ics for combinatorial optimization. We apply chaotic time se-
ries as noise sequence to neural networks for 10-city and 20-city
traveling salesman problems and compare the performance with
stochastic processes, such as Gaussian random numbers, uniform
random numbers, 1/f* noise and surrogate data sets which pre-
serve several statistics of the original chaotic data. In result, it is
shown that not only chaotic noise but also surrogates with simi-
lar autocorrelation as chaotic noise exhibit high solving abilities.
It is also suggested that since temporal structure of chaotic noise
characterized by autocorrelation affects abilities for combinato-
rial optimization problems, effects of chaotic sequence as addi-
tive noise for escaping from undesirable local minima in case of
solving combinatorial optimization problems can be replaced by
stochastic noise with similar autocorrelation.

key words: chaos, neural networks, combinatorial optimization
problems, traveling salesman problems, surrogation

1. Introduction

Recently, novel approach with neural dynamics for com-
binatorial optimization problems has been discussed.
The basic framework of this approach was formulated
by Hopfield and Tank[1]-[3]. They applied recur-
rent neural networks with a kind of gradient descent
dynamics decreasing computational energy function to
the traveling salesman problems (TSP). Although this
approach was very attractive from the viewpoint of ap-
plications of artificial neural networks, it is well known
that the Hopfield neural network has a serious problem;
namely, the energy function has many undesirable local
minima at which neural network dynamics gets stuck
due to the simple gradient descent dynamics.

In order to overcome such a problem, new meth-
ods with chaotic dynamics have been proposed[4]-
[12]. These researches are qualitatively classified into
two methods; the first is based upon chaotic neural net-
works composed of neuron models with chaotic dynam-
ics[13],[14], and the second simply introduces chaotic
sequence to each neuron as additive noise.

The first approach is based upon spatio-temporal
dynamics of the chaotic neural networks[13],[14],
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which makes it possible for neural networks to escape
from local minima of the simple gradient descent neu-
rodynamics. Nozawa modified the Hopfield-Tank neu-
ral network by the Euler’s method to a neural network
possessing negative self-feedback connections, which is
equivalent to the chaotic neural network [13],[14], and
applied it to the TSP[4],[6]. Yamada et al. investi-
gated the solving ability of the TSP with chaotic neu-
ral networks by comparing it with that of a stochastic
neural network model. They suggested that chaotic dy-
namics is more effective for solving combinatorial opti-
mization problems such as the TSP than the stochastic
neurodynamics [5]. They also implied that dynamics of
chaotic neural networks near “an edge of chaos[15],
[16],” has higher solving abilities[7]. The effectiveness
of chaotic simulated annealing was also shown by Chen
and Aihara with applications to the TSP and mainte-
nance scheduling problems in a power system[8],[9].
An advantage of chaotic simulated annealing is implied
by comparing with the conventional stochastic simu-
lated annealing. Hasegawa et al. also applied chaotic
neurodynamics to the TSP. They constructed chaotic
neural networks with two internal states and showed its
potential abilities for solving combinatorial optimiza-
tion problems such as the TSP[10].

On the other hand, in the second approach, chaotic
dynamics are used as additive noise for escaping from
undesirable local minima[11],[12]. Hayakawa and
Sawada applied chaotic noise to the local minimum
problem of the Hopfield neural network and showed
that chaotic noise is more effective than stochastic noise.
They implied that a kind of short time correlation of
chaotic noise may be relevant to the ability for combi-
natorial optimization[11]. Onodera et al. also showed
effects of external noise to the Hopfield neural net-
work [12] by applying filtered chaotic sequence with fi-
nite response filters to a 6-city TSP. They investigated
the effects of chaotic noise by changing autocorrelation
of the noise, and implied that correlated noise is effec-
tive for the combinatorial optimization.

In this paper, we analyze the additive effects of
chaotic dynamics for combinatorial optimization prob-
lems of 10-city and 20-city TSPs. We apply chaotic
noise[11] to a neural network for solving the TSP
and compare its performance with stochastic noise. As
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stochastic noise, white noise, colored noise with 1/f¢
spectra and surrogate noise[17] are introduced. Sur-
rogate noise is a kind of stochastic time series which
preserves statistical properties of the chaotic time se-
ries[17]. With such stochastic time series, we can inves-
tigate what kinds of statistical features are influential in
solving combinatorial optimization problems with the
neural network dynamics.

2. Solving Traveling Salesman Problems with Neu-
ral Networks

The method for solving the TSP with computational
energy function of a neural network was originally pro-
posed by Hopfield and Tank[3]. They showed that the
state of the neural network converges to a stable equi-
librium point corresponding to a local minimum of the
energy function. We fundamentally adopt this formu-
lation for the TSP[3]. Namely, in order to solve the
TSP with N cities, N x N neurons are arranged on the
N x N grid. The firing of the (4, j)th neuron means
that a city ¢ is visited on the j th order. The following
energy function is defined for the neural networks[3],

N /N z
Eap=A({> (}: ik (t) — 1)

i=1 \k=1
N /N 2
+ Z ( :Eik(t) — 1)
k=1 \i=1
N N N
+B Z Z Z dij ik (O{zjk+1(t) + Tj0-1(8)},
i=1 j=1 k=1

(1)

where A and B are positive constants, d;; is the distance
between the cities ¢ and j. From Eq. (1), the synaptic
connection weight between the (¢, k) th neuron and the
(7,1) th neuron and the threshold of the (4, k) th neuron
are defined as follows,

—A{6i5(1 = br1) + bra(1 — 8:5)}

— Bd;; (6ik+1 + bik—1), 2)
Oi = 24, 3

Wikjl =

where 6;; denotes the Kronecker’s delta and all of self
connections are assumed to be O.

When the noise or chaotic dynamics is injected to
the neural networks described above, the state keeps
wondering and never converges. Therefore, it is im-
portant how we observe the outputs of the networks. In
order to obtain high solving abilities, the following ob-
servation is used in Ref.[4]—[7]. In this paper, we also
introduce such observation, namely z;;(t) is replaced
by Z;1(t) which is an average firing rate of short term 7
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between t — 7 + 1 and ¢ defined as follows:

t

=2 Y eal) @

I=t—7+1

where, in this paper, the average time 7 = 20 which is
the same value of 7 used in[4]-[7]. In order to obtain
an alternative output value of 0 or 1, we define firing
and resting of the (7, 7)th neuron at time ¢ by following
Zij (t):

b (1) = i 5
Zi(t) { 0, otherwise, )

where “1” and “0” denote firing and resting of neu-
rons respectively, and Z(t) is the N th largest value of

z5(t) [4].

3. Performance Evaluation of Solving the TSP by
Chaotic Noise

3.1 Chaotic Noise and White Noise

In this paper, we study the effects of chaotic noise for
solving combinatorial optimization problems. On the
basis of a discrete-time neural network with symmet-
ric connections [ 1]-[3], we analyze the effects of addi-
tive chaotic noise by comparing with those of stochastic
noise[11]. We define the dynamics of each neuron as
follows:

N N
Z Z wzk:]lzgl t) + i + ﬁzzk(t)

j=1l=t1

zi(t+1)=

(6)

where f is sigmoidal function, f(z) = 1/(1 +
exp(—=z/¢)),e = 0.3, z;(t) is an added noise sequence
for the (i, k)th neuron, which is normalized to zero
mean and unit variance, and § is a scaling constant. In
this neural network model, chaos is injected to the each
neuron dynamics as additive noise. In this paper, we
analyze such additive effects of chaotic noise for combi-
natorial optimization. Here we adopt the logistic map
as an example of chaotic noise, which is described as
follows:

zie{t + 1) = rzip(0)(1 — zie(t)), )

where r is a bifurcation parameter. Since the logistic
map is the most familiar discrete map with chaotic dy-
namics, it is introduced in the first experiment. First of
all, we introduce uniformly distributed random num-
bers and Gaussian distributed random numbers, as
stochastic noise. Solving abilities by chaotic noise from
the logistic map with » = 3.95, the uniformly dis-
tributed notse and the Gaussian noise for the TSP are
shown in Table 1. Table | shows the result of 10-city
and 20-city TSPs shown in Figs. 1 and 2. In this paper,
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Table 1  Solving abilities (%)in case of adding chaotic noise
and stochastic noise for the 10-city (in Fig. 1) and 20-city travel-
ing salesman problems (in Fig.2).

| The number of cities [ 10 ] 20 ]

chaotic noise (logistic map; r = 3.95) | 100 | 94
uniformly distributed random noise 87 I

Gaussian distributed random noise 88 0
1 T T T T
0.8 _
0.6 - .
04 |- e
0.2 -
\ 1 : )

0
0O 02 04 06 08 1

Fig. 1 A 10-city traveling salesman problem by Hopfield and
Tank [3]. Diamonds (¢>) indicate cities, and solid lines indicate
the optimum solution.
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Fig. 2 A 20-city traveling salesman problem. Diamonds ()
indicate cities, and solid lines indicate the optimum solution.

the solving ability is defined as the rate that the network
finds an optimum solution among 100 different initial
conditions. Here it is defined that the network finds an
optimum solution if the state of neural network hits an
optimum solution at least once within 1,000 iterations.
In this paper, we use 100 different initial states for each
experiment in order to average dependence on the ini-
tial states. In this experiment, A = 1,B =1, 3 = 0.35.
In Table 1, chaotic noise shows the best solving ability.
Similar results can be obtained with other values of pa-
rameter 3, such as 8 = 0.3. Therefore, in the following
subsections, we analyze the effects of chaotic noise by
comparing with other kinds of stochastic noise, such as
1/ f*-type noise and surrogate noise[17].
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Fig. 3 Time series of 1/f* noise, in case of (1) a = 0.0 (corre-
sponding to white noise), (2) a = 1.0 and (3) a = 2.0.
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Fig. 4 Solving abilities on a 10-city TSP[3] by using 1/f*
noise in case of changing o.

3.2 1/f*-Type Noise

Examples of time series of 1/f“ noise are shown in
Fig.3. By changing the value of o, various 1/ f*-type
stochastic time series with different autocorrelation can
be realized.

Solving abilities of 1/ f* noise, with A=1,B =1
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and 3 = 0.35, are shown in Fig. 4, in case of changing
a. Figure 4 shows that smaller values of o have higher
solving abilities. It implies that autocorrelation should
be low for effective combinatorial optimization in this
situation. However, from Table 1, chaotic noise exhibits
better on solving abilities than white noise which corre-
sponds to a = 0, or the lowest autocorrelation in Fig. 4.
From these results, it is suggested that properties pecu-
liar to chaotic noise, for example, autocorrelation func-
tion shown in Fig. 6, may provide good effects for solv-
ing combinatorial optimization problems. Therefore,
we investigate solving abilities of chaotic noise with the
method of surrogate data, which can preserve statical
properties, such as autocorrelation function.

3.3 Surrogate Noise[17]

Then, we analyze what kinds of properties influence
solving abilities for combinatorial optimization on the
basis of surrogate data sets[17].

The method of surrogate data is usually introduced
to obtain reliable results in the field of nonlinear time
series analysis[18],[19]. It is well understood that care-
less estimation of nonlinear statistics such as fractal di-
mension, or Lyapunov exponents[18],[19],[21] could
lead to spurious identification of existence of chaos un-
derlying time series data. In chaotic time series analysis,
in order to avoid such spurious estimates of nonlinear
statistics evaluating chaotic dynamics, a null hypothesis
with some linear stochastic process to the observed time
series is introduced and checked whether or not it can
be rejected on the basis of surrogate data sets generated
according to the null hypothesis[17].

In this paper, we utilize a different aspect of the
method of surrogate data; namely, surrogates can pre-
serve several statistics of the original time series, such
as, empirical histograms and autocorrelation[18]. For
example, if the observed time series is hypothesized to
be characterized only by linear process, for example,
AR model, then the time series can be characterized by
autocorrelation.

In this paper, we use the method of surrogate data
for controlling preservation of statistics of the original
data; four algorithms for making surrogate data sets are
introduced.

1. Random-shuffled surrogate: The first surrogate
data are made by random shuffling of the origi-
nal time series. This surrogate does not preserve
autocorrelation of the original data but preserves
the empirical histogram.

2. Phase randomized (Fourier transformed) surro-
gate: The second surrogate data are made by the
following procedure. First, the Fourier transform
of the original data is calculated to obtain the
power spectrum. Then the phase structure of the
power spectrum is randomized. Finally the inverse
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Fourier transform is calculated. The obtained sur-
rogate data has the identical power spectrum with
the original data, but do not preserve the empirical
histogram.

3. Gaussian scaled (Amplitude adjusted Fourier
transformed) surrogate: The third surrogate is
made by the following procedure. First, Gaussian
distributed random numbers are produced and ar-
ranged to have the same rank order as the original
time series. Then, the phase randomized surrogate
algorithm is executed on the rank-ordered Gaus-
sian data. Finally, the Gaussian scaled surrogate
data are obtained by shuffling the original time se-
ries so as to keep the same rank order with the
obtained phase randomized surrogate data of the
rank-ordered Gaussian data. The obtained surro-
gate preserves exactly the empirical histogram and
approximately autocorrelation of the original data.

4. Fourier shuffled surrogate [20]: First, phase ran-
domized surrogate data are made by the second
algorithm. Then the original time series are shuf-
fled to keep the same rank order with the obtained
phase randomized data. This surrogate preserves
an approximate autocorrelation and the exact em-
pirical histogram.

The time series of the original chaotic noise from
a logistic map (r = 3.95) and its surrogate data sets of
each algorithm are demonstrated in Fig.5. The auto-
correlation functions of each time series are shown in
Fig. 6. It is clearly seen that autocorrelation of the phase
randomized surrogate is exactly same as the original,
and that those of Gaussian scaled and Fourier shuffled
surrogates are almost same. The random shuffled sur-
rogate data has quite different autocorrelation from the
original time series. In Table 2, summarized are which
statistics of each surrogate are preserved. For more de-
tail discussions on a surrogate data set and its statistics,
see Ref.[18].

Then 10-city (Fig. 1) and 20-city (Fig.2) TSPs are
solved by using a logistic map and its surrogates as
additive noise in Eq.(6). The results are shown in
Fig.7 with A = 1,B =1 and 3 = 0.35 and changing
the value of the parameter r. Figure 7 shows that the
random shuffled surrogates have quite different solving
abilities from those of the original data but the phase

Table 2  Statistics of surrogate data. O, A, O, and x mean
preserving each statistics completely, approximately, partly and
hardly, respectively [18].

first order | second order
statistics statistics
Random shuffled O X
Phase randomized (] O
Gaussian scaled O A
Fourier shuffled O A
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Fig. 5 Time series of the original chaotic noise (logistic map,
r = 3.95) and its surrogates. (1) the original time series, (2)
Random shuffled surrogate, (3) Phase randomized surrogate, (4)
Gaussian scaled surrogate and (5) Fourier shuffled surrogate.
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Fig. 6  Autocorrelation functions of a logistic map (r = 3.95)
and its surrogate data. The length of time series is 32, 768.

Fig.7 Solving abilities of 10-city and 20-city traveling salesman
problems with a logistic map and its surrogates. The upper figure
shows a bifurcation diagram of a logistic map, and the middle
figure shows Lyapunov exponents with changing the value of the
parameter r.
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Fig. 8 Dynamics of the chaotic neuron model. The upper fig-
ure shows a return map of chaotic neuron model and the lower
figure shows time series of chaotic neuron model.

randomized, Gaussian scaled and Fourier shuffled sur-
rogates, which preserve autocorrelation exactly or ap-
proximately, have similar abilities to the original data.
It suggests that temporal structure characterized by au-
tocorrelation effects solving abilities for combinatorial
optimization by chaotic noise. High solving abilities
of surrogate data sets suggest that effects of chaotic se-
quence for solving optimization problems can be re-
placed by stochastic noise with similar autocorrelation.

Then, we also introduce another kind of chaotic
data. Figure 9 shows the results in case of using chaotic
noise from a chaotic neuron model[13],[14], which is
defined by the following equation,

Zik(t + 1) = kZik(t) — af(zik(t)) + a, (8)

where f is sigmoidal function. The chaotic neuron
model is a discrete bimodal map which dynamics is
demonstrated in Fig. 8. In Fig. 9, the following param-
eter values are used: £k = 0.8, = 1.0, and a is used as
a bifurcation parameter. This result is obtained with
A=1,B =1 and 8 = 0.35. Figure 9 shows similar
results with those of the logistic map.

In result, we could conjecture as follows: abilities
of chaotic sequence as additive noise in order to solve
combinatorial optimization problems can be replaced

211

-

04 0.6
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Fig. 9 Solving abilities of a 10-city traveling salesman problem
with a chaotic neuron model and its surrogates. The upper figure
shows the bifurcation diagram of a chaotic neuron model, and
the middle figure shows Lyapunov exponents with changing the
value of the parameter a.

by surrogate data sets which preserve autocorrelation
of the original data.

In this paper, we introduced chaotic sequence only
as memoryless additive noise to the neural network dy-
namics. In case of using such a method, since there
are no feedback from the searching information for op-
timum solution; namely there is no relation between
the network dynamics and state space that has been al-
ready searched. On the other hand, chaotic neural net-
works[13],[14] can have memory effects in each neu-
ron dynamics. The state of chaotic neural networks de-
pends upon the past history of the previous states of the
neural network. However, dynamics of chaotic neural
networks is not always effective; our previous research
showed that a chaotic neural network with weak chaotic
behavior has higher solving abilities than that with peri-
odic behavior for combinatorial optimization problems
(in Ref.[10]). Therefore, neural networks with only
memory effects of the past history of previous states
are not enough for combinatorial optimization prob-
lems, but those with chaotic behavior influence solving
abilities. Then, it is suggested that chaotic neural net-
works have effects for combinatorial optimization not
only in its chaotic dynamics but also in memory effects,
so they must be more effective than an approach of us-
ing chaotic sequence as additive noise.

4. Conclusion

In this paper, we analyzed additive effects of chaotic dy-
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namics for combinatorial optimization problems. We
introduced chaotic sequence as additive noise source
and compared the performance of the original data with
stochastic time series such as Gaussian random num-
bers, uniform random numbers, colored noise with 1/ f<
spectra and surrogate data sets. In this experiment, we
confirmed the previous result that chaotic noise of the
logistic map is effective for the combinatorial optimiza-
tion. Moreover, it is clarified that phase randomized,
Gaussian scaled and Fourier shuffled surrogates have
similar abilities with the original logistic map. Since
these surrogates preserve the autocorrelation of the orig-
inal data, it implies that solving abilities of chaotic
noise is depending on its autocorrelation. Furthermore,
since surrogate data sets also exhibit high solving abili-
ties, it is suggested that effects of chaos as additive noise
can be replaced with such stochastic surrogate data.

In this paper, we introduce only the first and the
second order statistics, and do not discuss about higher
order statistics. It is important future works to investi-
gate solving abilities by such higher order surrogates.

On the other hand, it has already been indicated
that the chaotic neurodynamics have good effects for
combinatorial optimization problems[4]-[10]. It is
also a future problem to investigate effects of chaotic
dynamics in more detail and apply such chaotic neuro-
dynamics to other and larger scale combinatorial opti-
mization problems.
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