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Abstract. We consider the effect of viral diversity on the human immune sys-
tem with the frequency dependent proliferation rate of CTLs and the elimina-
tion rate of infected cells by CTLs. The model has very complex mathematical
structures such as limit cycle, quasi-periodic attractors, chaotic attractors, and
so on. To understand the complexity we investigate the global behavior of the
model and demonstrate the existence and stability conditions of the equilibria.
Further we give some theoretical considerations obtained by our mathematical
model to HIV infection.

1. Introduction. Patients infected with HIV have a long and variable incubation
period between infection and the development of AIDS. HIV can infect CD4+ T
cells, which represent an important component of the human immune system. By
infecting and depleting the CD4+ T cell population, HIV attacks the immune sys-
tem. During the incubation period of HIV infection (so-called asymptomatic phase),
CD4+ T cells decrease and eventually their number drops to essentially 0 (this im-
plies the breakdown of immune system). AIDS is defined as a CD4 cell count of less
than 200 µl in the peripheral blood. If AIDS develops, the patient is overwhelmed
and killed by other opportunistic infections. Many studies have shown that viral
diversity increases in the asymptomatic phase by the mutational escape of HIV.
An error-prone nature of HIV reverse transcriptase contributes to the tremendous
diversity of HIV [16]. Under the pressure of CTL responses which recognize and kill
virus-infected cells, viruses that contain mutated critical amino acids in epitopes
recognized by CTL are selected [17], [27]. In general, the new virus mutant escapes
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from the current immune response and grows unchecked initially, but it induces
another immune response that brings it down after some time. Meanwhile another
escape mutant has emerged, and so on. Thus the diversity increases over the disease
progression.

In this study, we focus on the asymmetric interaction between immunological
and viral diversity. Each virus strain can infect CD4+ T cells, but individual strain-
specific immune responses can only attack specific virus strains. Since the infection
by the virus and the proliferation and elimination by the immune cell are due
to the contacts between individuals, the asymmetric interactions are promoted in
more heterogeneous virus populations. In [13] and [15], we proposed the following
mathematical models in which CTL reactions (CTL proliferation and elimination
of infected cells by CTLs) depend on the frequency of CD4+ T cells characterized
by viral diversity:

T ′ = λ− dT −
n∑

l=1

β′lTVl,

I ′j = β′jTVj − aIj − qZj
Ij

T +
∑n

l=1 Il
,

V ′
j = kaIj − uVj ,

Z ′j = cZj
Ij

T +
∑n

l=1 Il
− δZj . (j = 1, 2, ..., n)

(1)

This model consists of 3n+1-variables: T denotes the population size of uninfected
CD4+ T cells, Ij denotes CD4+ T cells infected with virus particle of type j,
Vj denotes the free virus particle of type j, and Zj denotes the CTLs of type j,
respectively. The parameter λ is a rate at which new target cells are generated.
Uninfected cells, infected cells, virus, and CTLs are assumed to die at respective
rates d, a, u, and δ. Once cells are infected, we assume that they produce k times
new virus particles during their life, which on average has a length 1/a. Further,
we can reduce the model (1) to a simpler form, using a quasi-steady-state approach
and some scaling parameters, as follows (see [13]):

T ′ = 1− T −
n∑

l=1

βlTIl,

I ′j = βjTIj − aIj − qZj
Ij

T +
∑n

l=1 Il
,

Z ′j = cZj
Ij

T +
∑n

l=1 Il
− δZj , (j = 1, 2, ..., n).

(2)

In (2) we use scaling notations. Note that, as same as (1), the interactions between
specific infected cells and specific CTLs depend on the frequency that specific CTLs
encounter to the specific infected cells, but the interactions between uninfected cells
and specific infected cells are not frequency dependent. Thus our mathematical
model can characterize the asymmetric interactions emphasized by viral diversity.
More detailed discussions of our model are given in [13] and [15].

2. Mathematical analysis. The main purpose of this paper is to obtain the math-
ematical properties of model (2), such as the existence, uniqueness, and continuity
for the solution and the existence and stability conditions for the equilibria.
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Here we refer the basic results of the solution of (2). From the biological
point of view, all solutions are necessary to lie in the region R2n+1

+ . In this re-
gion, the local existence, uniqueness, and continuity of the solution are guaran-
teed by the standard theorem (see [7]). Namely, there exists a unique solution
(T (t), I1(t), ..., In(t), Z1(t), ..., Zn(t)) of (2) with T0 > 0, I10 > 0, ..., In0 > 0, Z10 >
0, ..., Zn0 > 0 on its maximal existence interval. Here T0, I10, ..., In0, Z10, ..., Zn0

denote initial values of (2) in Int R2n+1
+ . If the solutions remain bounded, then the

maximal interval is [0,∞). The following theorem implies that solutions starting in
Int R2n+1

+ exist in R2n+1
+ for all t ∈ [0,∞). For convenience, we define

∑n
j=1 Ij = I,∑n

j=1 Zj = Z and N = T + I + Z.

Theorem 2.1. If (T0, I10, ..., In0, Z10, ..., Zn0) ∈ Int R2n+1
+ , then (T (t), I1(t), ...,

In(t), Z1(t), ..., Zn(t)) exists in R2n+1
+ for all t ∈ [0,∞). Moreover (T (t), I1(t), ...,

In(t), Z1(t), ..., Zn(t)) is ultimately bounded in R2n+1
+ , i.e., model (2) is dissipative.

The proof of this theorem is similar to the proof of Theorem 2.1 in [14].

2.1. One-virus model. We investigate the stability of equilibria for one-virus
model (that is, the model without viral diversity), which is given by the follow-
ing model of differential equations:

T ′ = 1− T − β1TI1,

I ′1 = β1TI1 − aI1 − qZ1I1

T + I1
,

Z ′1 =
cZ1I1

T + I1
− δZ1.

(3)

Here we introduce a basic reproduction number R1, which is defined as the number
of newly infected cells that arise from any one infected cell when all cells are unin-
fected. The rate at which one infected cell gives rise to new infected cells is given
by β1T . If all cells are uninfected, then T = 1. Since the average lifespan of an
infected cell is 1/a, we obtain

R1 =
β1

a
.

Model (3) has three equilibria. The first one is EH = (1, 0, 0) which represents
a state where infected cells are absent. The second equilibrium EU = (T ∗, I∗1 , 0)
represents a state where infected cells are present, while CTLs are absent. Here the
components T ∗ and I∗1 are

T ∗ =
a

β1
, I∗1 =

1
a
− 1

β1
.

If R1 > 1, then EU exists in R3
+. The third equilibrium EC can be an interior equi-

librium, which represents a state in which both infected cells and CTLs are present.
Here the interior equilibrium EC = (T̂ , Î1, Ẑ1) is represented by the following form;

T̂ =
−1 +

√
1 + 4β̂

2β̂
, Î1 =

δ

c− δ
T̂ , Ẑ1 =

cT̂

q(c− δ)
(β1T̂ − a)

where β̂ = δβ1/(c− δ). If R1 >
aδ

c− δ
+1, then EC exists in IntR3

+. Here we always

assume that c is larger than δ i.e. c > δ in the following. Note that Z ′1 < 0 if
c ≤ δ. This model describes the situation where virus has not yet mutated. Iwasa



460 S. IWAMI, S. NAKAOKA, AND Y. TAKEUCHI

et al. [11] have proved that an interior equilibrium is globally stable, if the terms
associated with immune reactions are given by cZ1I1 and qZ1I1 instead of cZ1I1

T+I1
and

qZ1I1
T+I1

in model (3). However, we showed that the interior equilibrium of one-virus
model (3) can be unstable [13]. Since we obtained some local results for model (3)
in [13], we will prove the global properties of model (3) in this part.

First of all, we consider the following one-virus model without immune response:

T ′ = 1− T − β1TI1,

I ′1 = β1TI1 − aI1.
(4)

The immune response is triggered in encountering to foreign antigens. Therefore
this model describes the dynamics of the acute phase of HIV infection. Model (4)
has two equilibria. One is a healthy equilibrium Eh = (1, 0) which represents a state
in which infected cells are absent. The other is infected equilibrium Eu = (T ∗, I∗1 ).
It represents a state in which infected cells are present. Note that there exists Eu in
IntR2

+ if and only if R1 > 1. We obtain the following theorem for the global stability
of two equilibria. The proof of this theorem is similar to the proof of Theorem 1.1.5
in [26].

Theorem 2.2. If R1 ≤ 1, then Eh is globally asymptotically stable (in short, GAS).
On the other hand, if R1 > 1, then Eu is GAS.

Proof. First we consider the local stability of the equilibrium Eh. The Jacobian
matrix of the vector field corresponding to model (4) is

J =
(−1− β1I1 −β1T

β1I1 β1T − a

)
.

J evaluated at Eh is

JEh
=

(−1 −β1

0 β1 − a

)
.

Eigenvalues of JEh
are “− 1” and “β1− a”. Remember that R1 = β1/a. If R1 < 1,

then Eh is locally asymptotically stable (in short, LAS). To show that Eh is GAS,
we define the following function:

V =
(T − 1)2

2
+ I1.

If R1 ≤ 1, then

V̇ = (T − 1)(1− T − β1TI1) + β1TI1 − aI1

= (T − 1){−(T − 1)− β1I1(T − 1)− β1I1}+ β1TI1 − aI1

= −(1 + β1I1)(T − 1)2 + (β1 − a)I1

= −(1 + β1I1)(T − 1)2 − a(1−R1)I1

≤ −(1 + β1I1)(T − 1)2 ≤ 0.

Here “ ˙ ” denotes the time differentiation along an orbit. Note that V̇ = 0 if and
only if T = 1 and I1 = 0 when R1 < 1. Moreover V̇ = 0 if and only if T = 1
when R1 = 1. However, in each case, the largest invariant subset of V̇ (t) = 0 is
the singleton {Eh}. Thus, by LaSalle Invariance Principle, Eh is GAS on R2

+ when
R1 ≤ 1.
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Next we consider the local stability of equilibrium Eu. If R1 > 1, then Eu exists
in R2

+. Otherwise Eu does not exist in R2
+. J evaluated at Eu is

JEu
=

(−1− β1I
∗
1 −β1T

∗

β1I
∗
1 β1T

∗ − a

)
.

Note that β1T
∗ − a = 0. The characteristic equation of JEu

is

p2 + (1 + β1I
∗
1 )p + β2

1T ∗I∗1 = 0.

Here p denotes the indeterminate of the polynomial. Since T ∗ > 0, I∗1 > 0 and
β1 > 0, all roots of this characteristic equation have negative real part if R1 > 1.
This implies that Eu is LAS whenever it exists in R2

+. Now the stable manifold of
Eh is one-dimensional and, since Eh attracts along the T -axis, the stable manifold
of Eh lies on T -axis. Then the Butler-McGehee theorem (see [26]) allows one to
conclude that no trajectory with positive initial condition can have Eh as an omega
limit point. Since the initial value is positive, the omega limit set can not correspond
to Eh. If it contains Eh, then it must also contain an entire orbit different from
Eh belonging to the stable manifold of Eh. There are only two possible orbits:
these are unbounded. But the omega limit set can not contain an unbounded
orbit. Therefore, Eh is not a limit point. Now choose a positive (Dulac) function
ρ = 1/(TI1) in Int R2

+ and denote the right hand side of (4) as f(T, I1). Then we
have

divρf = − 1
T 2I1

< 0.

Dulac criterion implies that there is no periodic solution in Int R2
+. Thus, applying

Poincare-Bendixon theorem to model (4), we can conclude that Eu is GAS on Int
R2

+ if R1 > 1.

This theorem implies that if R1 > 1, then HIV spreads in individual, i.e., HIV
infects an individual. On the other hand, if R1 ≤ 1, then HIV is cleared, i.e., HIV
misses infecting an individual.

Further, we give some global and geometric analysis to immunological phenomena
for model (3). First, we prove that there exists a lower limit of T .

Lemma 2.3. Uninfected cells persist uniformly, i.e., lim inft→∞ T ≥ kT > 0, where
kT is a positive constant.

Proof. It follows from Theorem 2.1 that there exists a positive constant K such
that I1 ≤ K for sufficiently large time. Thus we have the following inequality for
the first equation of (3):

T ′ ≥ 1− T − β1TK = 1− (1 + β1K)T

for sufficiently large time. Therefore lim inft→∞ T ≥ 1/(1 + β1K) = kT .

Remark 1. In similar manner, we can show that uninfected cells persist uniformly
for model (2).

Next, we prove the situation where infected cells are absent in a steady state. In
[13], we showed that EH is LAS if R1 < 1. This argument does not state a global
behavior but only a local behavior. The following results deal with the global
stability of EH . To obtain the global stability theorem, we need the following
Lemma 2.4. We will exploit an analogous techniques given in [28].

Lemma 2.4. If R1 < 1, then infected cells are cleared, i.e., limt→∞ I1(t) = 0.
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Proof. It follows from the first equation of (3) that

T ′ = 1− T − β1TI1 ≤ 1− T.

Thus, integrating the both sides of this inequality over [0, t] gives

T (t) ≤ 1 + |T0 − 1|e−t.

Given ε > 0, we can choose sufficiently large t1 such that |T0− 1|e−t ≤ ε for t ≥ t1.
Then T (t) ≤ 1 + ε for all t ≥ t1.

The second equation of (3) satisfies

I ′1 = (β1T − a− qZ1

T + I1
)I1 ≤ (β1T − a)I1.

Thus we obtain the following inequality:

I1(t1 + t) ≤ I1(t1) exp
{∫ t1+t

t1

(β1T − a)ds

}
.

Remember that T (t) ≤ 1 + ε for all t ≥ t1. Hence

I1(t1 + t) ≤ I1(t1) exp
{∫ t1+t

t1

(β1(1 + ε)− a)ds

}
.

It follows from the definition of R1 that

I1(t1 + t) ≤ I1(t1) exp
{∫ t1+t

t1

(a(R1 − 1) + β1ε)ds

}
.

Choosing ε > 0 small enough so that g ≡ a(1−R1)−β1ε > 0 in the above inequality
yields

I1(t + t1) ≤ I1(t1)e−gt.

Hence I1(t + t1) → 0 as t →∞. i.e. limt→∞ I1(t) = 0.

Remark 2. In a similar manner, we can show that limt→∞ Ii(t) = 0 for all i =
1, 2, 3, ..., n if Ri < 1 in the model (2). Here Ri = βi/a (i = 1, 2, 3, ..., n).

Now we shall give the following theorem which proves that EH is GAS when
R1 < 1. Let x0 denote an initial value of model (3) (i.e. x0 = (T0, I10, Z10) ) and
ω(x0) denote an ω-limit set of orbit through x0.

Theorem 2.5. If R1 < 1, then EH is GAS on R3
+.

Proof. It follows from Lemma 2.4 that limt→∞ I1(t) = 0. Thus it is clear that
limt→∞ Z1(t) = 0 because of the form of the third equation of (3). This implies
that ω(x0) exists in the T axis for all x0 ∈ R3

+. Moreover the orbit through the
point on the T axis converges to “1” on the T axis. Thus we can conclude that EH

is GAS on R3
+ by Theorem A.1 in [14].

Remark 3. In a similar manner, we can show that the equilibrium (1, 0, 0, ..., 0)
for the model (2) is GAS on R2n+1

+ if Ri < 1 for all i = 1, 2, 3, ..., n.

Next, we consider the situation where infected cells are present. We are now
ready to apply a theorem on average Lyapunov function which is developed in [5]
and [10]. There are the other papers associated with average Lyapunov function
and property of repeller set (see [8] and [9]). Define

XI = {(T, I1, Z1) ∈ R3
+ : T ≥ kT , k ≤ N ≤ K},

SI = {(T, I1, Z1) : T ≥ kT , I1 = 0, Z1 ≥ 0, k ≤ N ≤ K}.
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Here kT = 1/(1 + β1K) is given in the proof of Lemma 2.1, k and K are also given
in the proof of Theorem 2.1. Then XI is compact and SI is a compact subset of
XI with empty interior. We can write

XI \ SI = {(T, I1, Z1) : T ≥ kT , I1 > 0, Z1 ≥ 0, k ≤ N ≤ K}.
Thus SI and XI \ SI are forward invariant sets because of the form of the second
equation of (3). Define PI = I1. Then PI : XI \ SI → R+ is a C1-class function
and PI(x) = 0 if and only if x ∈ SI . For y ∈ XI \ SI , the function

ψI(y) =
ṖI(y)
PI(y)

= β1T − a− qZ1

T + I1

is continuous, where “ ˙ ” denotes the time differentiation along an orbit. Moreover,
it is also bounded below, and hence we can define its extension to XI , still denoted
by ψI , by setting

ψI(x) = lim inf
y→x,y∈XI\SI

ψI(y) (x ∈ SI).

Obviously ψI is lower semicontinuous on XI . If

sup
t≥0

∫ t

0

ψI(π(x, s))ds > 0

for all x ∈ ω(SI), we can apply a theorem on average Lyapunov function. Here
π(x, s) denotes a semiflow generated by the solution of model (3) and ω(SI) is
defined as ω(SI) =

⋃
x∈SI

ω(x).

Lemma 2.6. If R1 > 1, then infected cells persist uniformly, i.e., lim inft→∞ I1(t) >
kI > 0, where kI is a positive constant.

Proof. By Theorem 2.2, it is clear that ω(SI) = {EH}. It suffices to show the above
condition only for x = EH . In fact, substituting x = EH into ψI(x) gives

ψI(x) = β1 − a = a(
β1

a
− 1) = a(R1 − 1).

Since R1 > 1, ψI(x) = a(R1 − 1) > 0. This implies that

sup
t≥0

∫ t

0

ψI(π(x, s))ds > 0

for all x ∈ ω(SI). Therefore there is a compact forward invariant set YI with dist
(YI , SI) > 0 such that every semiorbit in XI \ SI is ultimately in YI , i.e., there
exists a positive constant kI such that lim inft→∞ I1(t) > kI [10].

We can choose a constant kI such that 0 < kI < 1/a− 1/β1. Lemma 2.6 states
that immune system can not eradicate HIV forever if R1 > 1.

Moreover we consider the situation where immune cells are present. Set

XZ = {(T, I1, Z1) : T ≥ kT , I1 ≥ kI , Z1 ≥ 0, k ≤ N ≤ K},
SZ = {(T, I1, Z1) : T ≥ kT , I1 ≥ kI , Z1 = 0, k ≤ N ≤ K}.

Moreover, define PZ = Z1. For z ∈ XZ \ SZ , the function

ψZ(z) =
ṖZ(z)
PZ(z)

=
cI1

T + I1
− δ
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is continuous. In addition, it is bounded below, and hence we can define its extension
to XZ , which is still denoted by ψZ , by setting

ψZ(x) = lim inf
z→x,z∈XZ\SZ

ψZ(z) (x ∈ SZ).

Obviously ψZ is lower semicontinuous on XZ . In the similar manner, if

sup
t≥0

∫ t

0

ψZ(π(x, s))ds > 0

for all x ∈ ω(SZ), then we can also apply a theorem on average Lyapunov function.

Lemma 2.7. If R1 >
aδ

c− δ
+ 1, then immune cells persist uniformly, which is

equivalent to lim inft→∞ Z1(t) > kZ > 0, where kZ is a positive constant.

Proof. It is clear that ω(SZ) = {EU} by Theorem 2.1 because R1 > 1. It suffices
to show the above condition only for x = EU . In fact, substituting x = EU into
ψZ(x) gives

ψZ(x) =
c(

1
a
− 1

β1
)

a

β1
+

1
a
− 1

β1

− δ =

c

a
(R1 − 1)

1 +
1
a
(R1 − 1)

− δ.

Since R1 >
aδ

c− δ
+ 1, ψZ(x) = {c/a(R1 − 1)}/{1 + 1/a(R1 − 1)} − δ > 0. This

implies that

sup
t≥0

∫ t

0

ψZ(π(x, s))ds > 0

for all x ∈ ω(SZ). Therefore there is a compact forward invariant set YZ with dist
(YZ , SZ) > 0 such that every semiorbit in XZ \ SZ is ultimately in YZ , i.e., there
exists a positive constant kZ such that lim inft→∞ Z1(t) > kZ [10].

It is important for us to check the existence of uninfected cells, infected cells and
immune cells in IntR3

+. Here we define “Permanence” as follows:

Definition 2.8. System (3) is permanent if and only if
kT ≤ lim inf

t→+∞
T (t) ≤ lim sup

t→+∞
T (t) ≤ KT ,

kI ≤ lim inf
t→+∞

I(t) ≤ lim sup
t→+∞

I(t) ≤ KI ,

kZ ≤ lim inf
t→+∞

Z(t) ≤ lim sup
t→+∞

Z(t) ≤ KZ ,

for any solutions of model (3) with any x0 ∈ Int R3
+. Here ki and Ki (i = T, I, Z)

are positive constants which are independent of x0.

Thus, if model (3) is permanent, then uninfected cells, infected cells and immune
cells exist persistently in individual. By Lemma 2.3, Lemma 2.6 and Lemma 2.7,
we have the following result on permanence.

Theorem 2.9. If R1 >
aδ

c− δ
+ 1, then model (3) is permanent.

Theorem 2.9 states that the immune system can not eradicate HIV forever under
the condition R1 > aδ/(c− δ)+ 1, even if immune system attacks HIV. In practice,
most of patients who are infected with HIV develop AIDS after the long fight
between immune system and HIV.
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2.2. Multi-virus model. Model (2) has very complex mathematical structures
such as limit cycle, quasi-periodic attractors, chaotic attractors, and so on [13]. In
order to understand the complexity, we have to demonstrate the existence and sta-
bility conditions of the equilibria although the global behavior may be very difficult.
We will explain elegant relations between these conditions in this paper.

System (2) has various equilibria and the maximum number of nonnegative equi-
libria of (2) is given by the following expression:

(nCn + nCn−1 + ... + nC1) + (nCn · nC1 + nCn−1 · n−1C1 + ... + nC1 · 1C1) + 1.

Further these equilibria can be divided into three types (i), (ii), (iii):
(i)Controlled equilibrium : Ec-type, which means that all specific immune strains

are activated by its corresponding HIV strains. For example, Ec-type equilibrium
can include the following equilibrium:

(T̃ ; Ĩ1, ..., Ĩk, 0, ..., 0; Z̃1, ..., Z̃k, 0, ..., 0)

where

T̃ =
2

1 +

√
1 +

4δ
∑k

l=1 βl

c− kδ

,

Ĩ1 = ... = Ĩk =
−1 +

√
1 +

4δ
∑k

l=1 βl

c− kδ

2
∑k

l=1 βl

,

Z̃j =
(βj T̃ − a)(T̃ +

∑k
l=1 Ĩl)

q

for j = 1, ..., k. The other equilibria can be written in the similar manner. From the
definition of Ec-type, the number of Ec-type equilibrium is nCn +nCn−1 + ...+nC1.

(ii) Uncontrolled equilibrium : Eu-type, which means that one of all specific
immune strains is inactivated but the other immune strains are activated by its cor-
responding HIV strains. For example, Eu-type equilibrium can include the following
equilibrium:

(T̂ ; Î1, ..., Îk, 0, ..., 0; 0, Ẑ2, ..., Ẑk, 0, ..., 0)
where

T̂ =
a

β1
,

Î2 = ... = Îk =
1− T̂ + β1T̂

2

{∑k
l=2 βl + β1(

c

δ
− (k − 1))}T̂

,

Î1 = (
c

δ
− (k − 1))Îj − T̂ ,

Ẑj =
c(βj T̂ − a)

qδ
Îj

for j = 2, ..., k. The other equilibria can be written in the similar manner. From
the definition of Eu-type, the number of Eu-type equilibrium is nCn ·nC1 + nCn−1 ·
n−1C1 + ... + nC1 · 1C1.

(iii) Healthy equilibrium : Eh-type, which means that all HIV strains do not exist.
In this type, (1; 0, ..., 0; 0, ..., 0) is a unique equilibrium.
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For arbitrary strain number, we can obtain the exact expression of equilibria.
This implies that we will obtain the general existence condition of equilibria but
the general analysis is very complex and tedious. Therefore, in order to avoid a
mathematical difficulty, we let n = 3 and discuss with this model because the model
with n = 3 has enough information to understand the mathematical structure. The
equilibria can be written out as follows for n = 3:

EH = (TH ; 0, 0, 0; 0, 0, 0), E1 = (T1; I1:1, 0, 0; 0, 0, 0), E2 = (T2; 0, I2:2, 0; 0, 0, 0),

E3 = (T3; 0, 0, I3:3; 0, 0, 0), E1
1 = (T 1

1 ; I1
1:1, 0, 0;Z1

1:1, 0, 0),

E2
2 = (T 2

2 ; 0, I2
2:2, 0; 0, Z2

2:2, 0),

E3
3 = (T 3

3 ; 0, 0, I3
3:3; 0, 0, Z3

3:3), E1
12 = (T 1

12; I
1
1:12, I

1
2:12, 0;Z1

1:12, 0, 0),

E1
13 = (T 1

13; I
1
1:13, 0, I1

3:13; Z
1
1:13, 0, 0), E2

23 = (T 2
23; 0, I2

2:23, I
2
3:23; 0, Z2

2:23, 0),

E2
12 = (T 2

12; I
2
1:12, I

2
2:12, 0; 0, Z2

2:12, 0), E3
13 = (T 3

13; I
3
1:13, 0, I3

3:13; 0, 0, Z3
3:13),

E3
23 = (T 3

23; 0, I3
2:23, I

3
3:23; 0, 0, Z3

3:23), E12
12 = (T 12

12 ; I12
1:12, I

12
2:12, 0; Z12

1:12, Z
12
2:12, 0),

E13
13 = (T 13

13 ; I13
1:13, 0, I13

3:13; Z
13
1:13, 0, Z13

3:13), E23
23 = (T 23

23 ; 0, I23
2:23, I

23
3:23; 0, Z23

2:23, Z
23
3:23),

E12
123 = (T 12

123; I
12
1:123, I

12
2:123, I

12
3:123; Z

12
1:123, Z

12
2:123, 0),

E13
123 = (T 13

123; I
13
1:123, I

13
2:123, I

13
3:123; Z

13
1:123, 0, Z13

3:123),

E23
123 = (T 23

123; I
23
1:123, I

23
2:123, I

23
3:123; 0, Z23

2:123, Z
23
3:123),

E+ = (T+; I1:+, I2:+, I3:+; Z1:+, Z2:+, Z3:+)

and these equilibria can be divided into three types:

Ec = {E1
1 , E2

2 , E3
3 , E12

12 , E13
13 , E23

23 , E+},
Eu = {E1, E2, E3, E

1
12, E

1
13, E

2
23, E

2
12, E

3
13, E

3
23, E

12
123, E

13
123, E

23
123},

Eh = {EH}.

In this part, we will focus a local behavior of the model (2). For theoretical results
about some threshold phenomenon of immnue inducement refer to [15].

2.2.1. Existence condition. We introduce a basic reproductive number Rj = βj/a
(j = 1, ..., n). For our convenience, let β1 < β2 < ... < βn without loss of generality.
Then the basic reproductive numbers satisfy the following relation:

R1 < R2 < ... < Rn.

It is clear that EH always exists in R7
+.

Since

I1:1 =
1
a
− 1

β1
, I2:2 =

1
a
− 1

β2
, I3:3 =

1
a
− 1

β3
,

E1, E2, E3 exists in R7
+ if R1 > 1, R2 > 1, R3 > 1, respectively.

It is clear that T 1
1 > 0, T 2

2 > 0, T 3
3 > 0, I1

1:1 > 0, I2
2:2 > 0, I3

3:3 > 0 because E1
1 ,

E2
2 , E3

3 belong to Ec-type equilibrium. Therefore, we have only to check conditions
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which ensure Z1
1:1 > 0, Z2

2:2 > 0, Z3
3:3 > 0. Since

Z1
1:1 =

(β1T
1
1 − a)(T 1

1 + I1
1:1)

q
, Z2

2:2 =
(β2T

2
2 − a)(T 2

2 + I2
2:2)

q
,

Z3
3:3 =

(β3T
3
3 − a)(T 3

3 + I3
3:3)

q
,

T 1
1 =

2

1 +
√

1 +
4δβ1

c− δ

, T 2
2 =

2

1 +
√

1 +
4δβ2

c− δ

, T 3
3 =

2

1 +
√

1 +
4δβ3

c− δ

,

E1
1 , E2

2 , E3
3 exists in R7

+ if R1 > 1+aδ/(c−δ), R2 > 1+aδ/(c−δ), R3 > 1+aδ/(c−δ),
respectively.

It is clear that T 1
12 > 0, T 1

13 > 0, T 2
23 > 0, T 2

12 > 0, T 3
13 > 0, T 3

23 > 0 because E1
12,

E1
13, E2

23, E2
12, E3

13, E3
23 belong to Eu-type equilibrium. Since

I1
1:12 =

1− T 1
12 + β2(T

1
12)

2

T 1
12{β1 + β2(

c

δ
− 1)}

, I1
1:13 =

1− T 1
13 + β3(T

1
13)

2

T 1
13{β1 + β3(

c

δ
− 1)}

, I2
2:23 =

1− T 2
23 + β3(T

2
23)

2

T 2
23{β2 + β3(

c

δ
− 1)}

,

I2
2:12 =

1− T 2
12 + β1(T

2
12)

2

T 2
12{β2 + β1(

c

δ
− 1)}

, I3
3:13 =

1− T 3
13 + β1(T

3
13)

2

T 3
13{β3 + β1(

c

δ
− 1)}

, I3
3:23 =

1− T 3
23 + β2(T

3
23)

2

T 3
23{β3 + β2(

c

δ
− 1)}

,

I1
1:12 > 0, I1

1:13 > 0, I2
2:23 > 0, I2

2:12 > 0, I3
3:13 > 0, I3

3:23 > 0 since lim supt→∞ T (t) ≤
1 for (2). Moreover the other components of these equilibria are as follows:

I1
2:12 = (

c

δ
− 1)I1

1:12 − T 1
12, I1

3:13 = (
c

δ
− 1)I1

1:13 − T 1
13, I2

3:23 = (
c

δ
− 1)I2

2:23 − T 2
23,

I2
1:12 = (

c

δ
− 1)I2

2:12 − T 2
12, I3

1:13 = (
c

δ
− 1)I3

3:13 − T 3
13, I3

2:23 = (
c

δ
− 1)I3

3:23 − T 3
23,

Z1
1:12 =

c(β1T
1
12 − a)I1

1:12

qδ
, Z1

1:13 =
c(β1T

1
13 − a)I1

1:13

qδ
, Z2

2:23 =
c(β2T

2
23 − a)I2

2:23

qδ
,

Z2
2:12 =

c(β2T
2
12 − a)I2

2:12

qδ
, Z3

3:13 =
c(β3T

3
13 − a)I3

3:13

qδ
, Z3

3:23 =
c(β3T

3
23 − a)I3

3:23

qδ
.

Therefore, we can obtain the following conditions:

I1
2:12 > 0, Z1

1:12 > 0 ⇐⇒ R1 > R2 >
1 +

√
1 +

4β1δ

c− δ
2

⇐⇒ E1
12 ∈ R7

+,

I1
3:13 > 0, Z1

1:13 > 0 ⇐⇒ R1 > R3 >
1 +

√
1 +

4β1δ

c− δ
2

⇐⇒ E1
13 ∈ R7

+,

I2
3:23 > 0, Z2

2:23 > 0 ⇐⇒ R2 > R3 >
1 +

√
1 +

4β2δ

c− δ
2

⇐⇒ E2
23 ∈ R7

+,

I2
1:12 > 0, Z2

2:12 > 0 ⇐⇒ R2 > R1 >
1 +

√
1 +

4β2δ

c− δ
2

⇐⇒ E2
12 ∈ R7

+,

I3
1:13 > 0, Z3

3:13 > 0 ⇐⇒ R3 > R1 >
1 +

√
1 +

4β3δ

c− δ
2

⇐⇒ E3
13 ∈ R7

+,

I3
2:23 > 0, Z3

3:23 > 0 ⇐⇒ R3 > R2 >
1 +

√
1 +

4β3δ

c− δ
2

⇐⇒ E3
23 ∈ R7

+.
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Figure 1. The existence condition of equilibria for n = 3 with
R1 < R2 < R3: A bullet mark denotes the bifurcation point. This
means that if basic reproductive number exceeds the bullet mark
then its corresponding equilibrium exists in R7

+. In the figure, we
assumed that β3/(c − δ) < (β1 + β2)/(c − 2δ). Otherwise, the
position of E3

13 and E12
12 is exchanged.

In the similar manner, we have the existence conditions for E12
12 , E13

13 , E23
23 , E12

123,
E13

123, E23
123, E+:

1 +

√
1 +

4(β1 + β2)δ
c− 2δ

2
< R1, R2 ⇐⇒ E12

12 ∈ R7
+,

1 +

√
1 +

4(β1 + β3)δ
c− 2δ

2
< R1, R3 ⇐⇒ E13

13 ∈ R7
+,

1 +

√
1 +

4(β2 + β3)δ
c− 2δ

2
< R2, R3 ⇐⇒ E23

23 ∈ R7
+,

1 +

√
1 +

4(β1 + β2)δ
c− 2δ

2
< R3 < R1, R2 ⇐⇒ E12

123 ∈ R7
+,

1 +

√
1 +

4(β1 + β3)δ
c− 2δ

2
< R2 < R1, R3 ⇐⇒ E13

123 ∈ R7
+,

1 +

√
1 +

4(β2 + β3)δ
c− 2δ

2
< R1 < R2, R3 ⇐⇒ E23

123 ∈ R7
+,

1 +

√
1 +

4(β1 + β2 + β3)δ
c− 3δ

2
< R1, R2, R3 ⇐⇒ E+ ∈ R7

+,

Here we assume that c− 3δ > 0.
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However, E1
12, E1

13, E2
23, E12

123, E13
123 can not exist in R7

+ because of R1 < R2 < R3.
Then the number of equilibria which can exist in R7

+ is

(3C3 + 3C2 + 3C1) + ( 3C3 · 3C1

1
+ 3C2 · 2C1

2
+ 3C1 · 1C1

3
) + 1 = 15.

In general, the number of equilibria which can exist in nonnegative cone is given by
the following expression:

(nCn + nCn−1 + ... + nC1) + (nCn · nC1

1
+ nCn−1 · n−1C1

2
+ ... + nC1 · 1C1

n
) + 1.

In this way, we can obtain a relation among the existence condition for the
equilibria (see Fig. 1) and also have the relation for n ≥ 3 in the same manner.

2.2.2. Instability condition of boundary equilibria. For n = 1, some stability condi-
tion of equilibria was obtained in [13]. Furthermore, we observed strange attractors
and periodic attractors for n = 2 in [13]. That is, the behavior of (2) tends to be
complex as viral diversity increases.

In this part, we investigate the instability condition of boundary equilibria for
n = 3 except E1

12, E1
13, E2

23, E12
123, E13

123.
Let us evaluate J at equilibrium EH . Here J denotes the Jacobian matrix of (2)

for n = 3. The eigenvalues of JEH
are −1, βj − a (j = 1, 2, 3), −δ, −δ and −δ.

Remember that Rj = βj/a (j = 1, 2, 3) and R1 < R2 < R3. If R3 < 1, then EH is
LAS. But if R3 > 1, then EH is unstable.

For E1, one of the eigenvalues of JE1 is β2T1 − a. However β2T1 − a is always
positive because of R1 < R2. This implies that E1 is always unstable. In the similar
manner, E2 is also always unstable.

For E3, the eigenvalues of JE3 are p1, p2, β1T3 − a, β2T3 − a, −δ, −δ and
cI3:3/(T3 + I3:3)− δ. Here p1 and p2 are the roots of the following equation:

p2 + (1 + β3I3:3)p + β2
3T3I3:3 = 0.

From the Routh-Hurwitz criterion, the real part of p1 and p2 are negative. Further
β1T3 − a and β2T3 − a are negative because of R1 < R2 < R3. Therefore, if
cI3:3/(T3 + I3:3) − δ < 0, then E3 is LAS. By substituting T3 and I3:3 into the
inequality, we obtain that

cI3:3/(T3 + I3:3)− δ < 0 ⇐⇒ R3 < 1 +
aδ

c− δ
.

Thus, if R3 < 1 + aδ/(c− δ), then E3 is LAS. But if R3 > 1 + aδ/(c− δ), then E3

is unstable.
For E1

1 , one of the eigenvalues of JE1
1

is β3T
1
1 − a. If β3T

1
1 − a < 0, then E1

1 can
be stable although it is a necessary condition. By substituting T 1

1 into the above
inequality, we obtain that

β3T
1
1 − a < 0 ⇐⇒ R3 <

1 +
√

1 +
4δβ1

c− δ
2

.

Remember that the existence condition of E1
1 is

1 +
aδ

(c− δ)
< R1.
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Note that the above condition is equivalent to

1 +
√

1 +
4δβ1

c− δ
2

< R1.

This implies that E1
1 is always unstable because of R1 < R3. In the similar manner,

E2
2 is also unstable.
For E3

3 , the eigenvalues of JE3
3

are p1, p2, p3, β1T
3
3 − a, β2T

3
3 − a, −δ and −δ.

Here p1, p1 and p3 are the roots of the following equation:

|p ·Q− JE3
3
| =

∣∣∣∣∣∣∣∣∣

p + 1 + β3I
3
3:3 β3T

3
3 0

−β3I
3
3:3 −

δ

c
(β3T

3
3 − a) p− δ

c
(β3T

3
3 − a)

qδ

c
δ

q
(β3T

3
3 − a) −c− δ

q
(β3T

3
3 − a) p

∣∣∣∣∣∣∣∣∣
= 0,

where Q is a 3 × 3 identity matrix. Assume that p1, p2, p3 have negative real
parts. Refer to [13] for a condition satisfying the above assumption. Therefore, if
β2T

3
3 − a < 0, then E3

3 is LAS. By substituting T 3
3 into the inequality, we obtain

that

β2T
3
3 − a < 0 ⇐⇒ R2 <

1 +
√

1 +
4δβ3

c− δ
2

.

Thus, if R2 < (1 +
√

1 + 4δβ3/(c− δ))/2 and p1, p2, p3 have negative real parts,
then E3

3 is LAS. But if R2 > (1 +
√

1 + 4δβ3/(c− δ))/2, then E3
3 is unstable.

For E2
12, one of the eigenvalues of JE2

12
is β3T

2
12−a. However β3T

2
12−a is always

positive because of R1 < R3. This implies that E2
12 is always unstable. In a similar

manner, E3
13 is also always unstable.

For E3
23, two of the eigenvalues of JE3

23
are β1T

3
23 − a and cI3

2:23/(T 3
23 + I3

2:23 +
I3
3:23)− δ. Since R1 < R2, β1T

3
23 − a is always negative. Therefore, if cI3

2:23/(T 3
23 +

I3
2:23 + I3

3:23)− δ > 0, then E3
23 is unstable although it is a sufficient condition. Re-

mark that this equilibrium can be stable with reasonable condition. By substituting
T 3

23, I3
2:23, and I3

3:23 into the above inequality, we obtain that

cI3
2:23

T 3
23 + I3

2:23 + I3
3:23

− δ > 0 ⇐⇒ I3
2:23 > I3

3:23

⇐⇒ R2 >
1 +

√
1 +

4δ(β2 + β3)
c− 2δ

2
.

Note that T 3
23+I3

2:23+I3
3:23 = cI3

3:23/δ. Thus, if R2 > (1+
√

1 + 4δ(β2 + β3)/(c− 2δ))/2,
then E3

23 is unstable.
For E12

12 , one of the eigenvalues of JE12
12

is β3T
12
12 −a. Therefore, if β3T

12
12 −a < 0,

then E12
12 can be stable. By substituting T 12

12 into the above inequality, we obtain
that

β3T
12
12 − a < 0 ⇐⇒ R3 <

1 +

√
1 +

4δ(β1 + β2)
c− 2δ

2
.

However it is impossible because of the existence condition of E12
12 . That is, E12

12 is
always unstable. In the similar manner, E13

13 is also always unstable.



MATHEMATICAL ANALYSIS OF A HIV MODEL 471

For E23
23 , one of the eigenvalues of JE23

23
is β1T

23
23 −a. Therefore, if β1T

23
23 −a > 0,

then E23
23 is unstable. Remark that this equilibrium can be stable with reasonable

condition. By substituting T 23
23 into the above inequality, we obtain that

β1T
23
23 − a > 0 ⇐⇒ R1 >

1 +

√
1 +

4δ(β2 + β3)
c− 2δ

2
.

Thus, if R1 > (1 +
√

1 + 4δ(β2 + β3)/(c− 2δ))/2, then E23
23 is unstable.

For E23
123, one of the eigenvalues of JE23

123
is cI23

1:123/(T 23
123+I23

1:123+I23
2:123+I23

3:123)−δ.
Therefore, if cI23

1:123/(T 23
123+I23

1:123+I23
2:123+I23

3:123)−δ > 0, then E23
123 is unstable. Re-

mark that this equilibrium can be stable with reasonable condition. By substituting
T 23

123, I23
1:123, I23

2:123 and I23
3:123 into the above inequality, we obtain that

cI23
1:123

T 23
123 + I23

1:123 + I23
2:123 + I23

3:123

− δ > 0 ⇐⇒ I23
1:123 > I23

2:123 = I23
3:123

⇐⇒ R1 >
1 +

√
1 +

4δ(β1 + β2 + β3)
c− 3δ

2
.

Thus, if R1 > (1 +
√

1 + 4δ(β1 + β2 + β3)/(c− 3δ))/2, then E23
123 is unstable.

In this way, we obtain instability conditions of the boundary equilibria (see Fig.
2) and also can obtain the condition for n ≥ 3 in the same manner. For n = 3, the

Figure 2. The instability condition of boundary equilibria for n =
3 with R1 < R2 < R3: A circle mark denotes the threshold point.
This means that if the basic reproductive number exceeds the circle
mark then its corresponding equilibrium becomes surely unstable
although it is a sufficient condition. E1, E2, E1

1 , E2
2 , E2

12, E3
13, E12

12 ,
and E13

13 are always unstable.

equilibria which can be stable are EH , E3, E3
3 , E3

23, E23
23 , E23

123, and E+. The other
equilibria are always unstable whenever they exist in R7

+. Comparing Figure 1 with
2, we can note as follows. If an equilibrium which can be stable bifurcates in R7

+,
then all existing equilibria become unstable. We can conclude that two equilibria
can not be stable simultaneously. That is, all boundary equilibria are unstable
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whenever the interior equilibrium exists for arbitrary n. Therefore, our conjecture
is that (2) is permanent whenever the interior equilibrium exists. To prove this is
our future work.

3. Simulation. We investigate how equilibrium distribution of uninfected CD4+

T cells changes with respect to the change in the parameter c or δ for n = 3.
Numerical simulations are implemented with the following parameters

β1 = 7.0, β2 = 10.0, β3 = 12.0, a = 2.0, δ = 2.0, c = 40 and q = 40. (5)

So far as numerical simulations were performed with (5), we confirmed that one
of equilibria is stable. Therefore we will plot the number of uninfected cells at
the stable equilibrium. Firstly we investigate how the maximum proliferation of
CTLs affects the structure of populations in equilibrium by using c as our control
parameter (see Fig. 3). As analytical results suggest, uninfected cells in equilibrium
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Figure 3. Equilibrium distribution of uninfected CD4 T cells with
respect to c. Parameter c measures the maximum proliferation of
CTLs. Active proliferative CTL allows the invasion of viral strains
with lower infectivity.

increase with c increasing if stable equilibrium is Ec-type. On the other hand,
uninfected cell count does not change with c increasing if stable equilibrium is Eu-
type. If the proliferation of CTLs increases, interestingly, the immune system allows
the invasion of HIV strain type 2 and 1, which should possess lower infectivity than
HIV strain type 3. Although uninfected CD4+ T cell count increases as c increases,
the diversity of viral strains also increases. Next we investigate how the death
rate of CTLs affects to determine the structure of populations. Here δ is used our
control parameter. As analytical results suggest, uninfected cells in equilibrium
decrease with δ increasing f stable equilibrium is Ec-type. On the other hand,
uninfected cell count does not change with δ increasing if stable equilibrium is Eu-
type. Equilibrium distribution in Figure 4 can be interpreted similarly to that in
Figure 3 in the opposite way: diversity of viral strains decreases because uninfected
CD4+ T cell count decreases.
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Figure 4. Equilibrium distribution of uninfected CD4 T cells with
respect to δ. Parameter δ measures the death rate of CTLs. High
death rate of CTLs reduces immunosuppression of infected cells.
This leads to more competition and competitive exclusion.

4. Discussion. Today, there are still many problems surrounding HIV infection
that have not yet been completely elucidated, in particular the problems on vi-
ral diversity, on so long asymptomatic phase and on collapse of immune system.
Mathematical models have contributed to solve many problems on virus infections.
In fact, the models are exploited to provide estimation for rate constants of HIV
dynamics (see [3], [4], [6], [18], [19]), clear views of complex interactions between
virus and immune system (see [11], [12], [22], [23], [24], [25]) and even HIV thera-
peutic strategies (see [1], [2]). Many studies about HIV infection are collected by
M. Nowak in an interesting book [20]. In this study, we focus on the viral diversity
and the frequency dependence among the interactions for the virus and immune
cells.

In a natural setting, the original infection occurs with a heterogeneous HIV
population. But the immune system in the newly infected patient has not yet been
activated. There is exponential expansion of the invading virus, selecting for the
fastest-growing strain without consideration for immunological escape. This initial
phase will lead to a virus population with very low genetic and antigenic diversity.
Subsequently the immune system becomes activated and the patient passes to the
asymptomatic phase [21]. From our mathematical analysis our immune system
can not eradicate HIV forever if R1 > aδ/(c − δ) + 1. In fact, immune cells can
not eradicate the virus in the initial phase because of very high HIV proliferation.
Afterward the immune system selects for antigenic variation in those epitopes that
are recognized by relevant immune responses. Therefore it is important to consider
the viral diversity for the disease progression, in particular in the asymptomatic
phase. For the multi-virus model the general analysis of the equilibria gives some
interesting considerations about the CD4+ T cell size and the possibility of the
maintenance of the viral diversity concerned with immune response against HIV.
For example, we consider the situation that the proliferation of CTL, c, is high
and the death rate of CTL, δ, is low. This situations is reasonable for the immune
system. In fact 1/δ denotes the average life-time of an immune cell and c can



474 S. IWAMI, S. NAKAOKA, AND Y. TAKEUCHI

be interpreted as the maximum efficiency of immune inducement. This implies
that the increasing of c and the decreasing of δ can induce the efficient immune
response. Interestingly, the efficient immune response allows the increasing of the
viral diversity because E+ is stable. This is because that the amount of uninfected
CD4+ T cells as a growth limiting single resource for HIV strains remains to high
level (see Fig. 3 and 4). Thus the efficient immune response leads to the increasing
of viral diversity in the course of HIV infection because of the sufficient amount
of uninfected CD4+ T cells. If c is low and δ is high, which are not reasonable
situation for the immune system, then the immunosuppression of CTL response is
reduced and hence the total amount of infected cells will increase relatively. The
increasing of infected cells emphasizes the effect of exploitative competition among
different HIV strains for uninfected CD4+ T cells. The exploitative competition
will lead to competitive exclusion because of the shortage of uninfected CD4+ T
cells (see Fig. 3 and 4). The HIV strain with the highest infectivity outcompete the
other HIV strains. Thus the competitive exclusion possibly reduces the diversity of
viral strains. Therefore our results imply that the maintenance of the viral diversity
depends on the amount of the available uninfected CD4+ T cells (we remark that
the basic reproductive numbers do not change in Fig. 3 and 4). However, in our
model, we do not consider the effect of immune impairment by HIV or the helper
effect by CD4 T cells. Moreover we should consider the cross reactivity of CTL
because HIV strains do not have completely different epitopes and many types of
CTL will recognize the majority of infected cells even though they are infected
with different strains. Although these effects may change our implication of the
possibility, we leave the inclusion of these additional effects as future work.

In [13], we explained that the interior equilibrium of our model can become
unstable without viral diversity and we observed stable periodic orbits. Further our
mathematical models suggested that viral diversity produces strange attractors.
In [15], we explained that a new diversity threshold theory which states that the
specific CTLs to the viral strain become inactivated (that is, some HIV strain can
escape from its specific immune response) when the diversity of HIV strains exceeds
some threshold number. In order to understand these interesting phenomena we
proved some global behavior of the model and demonstrated the existence and
stability conditions of the equilibria in this paper. These observations, such as
complex behavior or threshold phenomenon, are due to the frequency dependence
term because Iwasa et al. [11] have proved that an interior equilibrium is globally
stable if the terms associated with immune reactions are given by cZjIj and qZjIj

instead of cZjIj

T+
∑n

l=1 Il
and qZjIj

T+
∑n

l=1 Il
in model (2). As the viral diversity increases,

it would be expected that the frequency dependence relatively is emphasized in
our model. This is because that the effect of viral diversity is reflected in the rate
of CTL proliferation and the elimination of infected cells. Further increasing of
the diversity leads to a loss of the recognition ability of the immune cells and the
efficiency between infections of the virus and eliminations of the immune cells is
shifted in favor of the virus in the high viral diversity. Therefore the asymmetric
interactions characterized by the frequency and the diversity may be an essential
factor of the complex immune response or breakdown of the immune system in the
disease.
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